Assessing Fit & Comparing SEMs fit with Likelihood

Jarrett E. K. Byrnes

Outline

- 1. Assessing model fit: the χ^2
 - Related indices
- 2. Adjusting for non-normality
- 3. Model comparison
- 4. Testing mediation

Evaluating the Discrepancy between Sample Covariances and Model-Implied Covariances

The log likelihood ratio, F_{MU} and its sample generalization \hat{C} , follow a (chisquare) distribution. It is often used to calculate a model chi-square (χ^2):

$$\chi^2 = \hat{C} = (n-1)F_{MI}$$

Here, *n* refers to the sample size, thus χ^2 is a direct function of sample size.

The individual discrepancies between observed and implied covariances can also be examined as residuals and through derived "modification indices".

The Classic Test using P Values

 $\chi^2 = 1.78$ with 50 samples p = 0.182

 χ^2 = 3.60 with 100 samples p = 0.058

 χ^2 = 7.24 with 200 samples p = 0.007

Our ability to detect significant differences from our base model, depends as usual on sample size.

Note that in asking does the modeled covariance matrix match the observed matrix, p>0.05 means no discrepancy

Single-degree-of-freedom chi-square criterion: critical χ^2 value for 1 df change = 3.84

Kline (2012) recommends 4 measures of model fit:

- (1) Model Chi-Square with its df and p-value.
 - prefer p-value greater than 0.05
- (2) Root Mean Square Error of Approximation (RMSEA).
 - prefer lower 90%CI to be < 0.05
- (3) Comparative Fit Index (CFI).
 - prefer value greater than 0.90
- (4) Standardized Root Mean Square Residual (SRMR).
 - prefer value less than 0.10

RMSEA for Our Example

Samples **RMSEA** PCLOSE LO90 HI90 50 .126 .000 .426 .208 100 .162 .000 .356 .089 200 .177 .074 .307 .024

We are still affected by sample size / power. (which is reasonable)

As our sample size increases, we can expect our data to support more and more complex models.

Measures of Goodness of Fit that don't involve p-values

CFI: uses Centrality of model χ^2

50 samples = 0.96

100 samples = 0.94

200 samples = 0.94

Diagnosing Causes of Lack of Fit with Residuals (misspecification)

<u>Residuals</u>: These represent the magnitude of deviation between the relationships in the data and those implied by the model. Very important for evaluating model fit.

<u>Modification Indices</u>: Predicted effects of model modification on model chisquare.

Statistical Modification Criteria

- If a path is N.S., dropping it may lead to less variation in other parameter estimates.
- Lagrange Multipliers: The amount that $\chi 2$ would decrease due to including a path.
- Wald W statistic: How much $\chi 2$ would *increase* if a path is trimmed.
- Be very careful here for data dredging.

Fully Mediated Fire age cover firesev ~ age cover ~ firesev ~ firesev' fullMedSEM<-sem(fullMedModel, data=keeley)

Solution: Large Residual rich->distance correlation

> residualsCor(distFit2)

rich hetero abiotc distnc

rich 0.000

hetero -0.042 0.000

abiotic -0.032 -0.118 0.000

distance -0.271 0.000 0.000 0.000

Additional Points about Overall Model Fit

- 1. Assessing <u>overall model fit</u> is a quest to ensure you have an adequate model (no important missing paths).
- When you are missing important paths/ relationships, your parameter estimates may be incorrect and not reflect the true relationships in the data. Then, your model is said to be misspecified.

Solution: Large Residual rich->distance correlation

#modification indices, with a trick to only see big ones
> modI<-modificationIndices(distFit2, standardized=F)</pre>

> modI[which(modI\$mi>3),]

 lhs op
 rhs
 mi
 epc

 1
 rich ~~
 hetero 15.181
 -1.690

 2
 rich ~~
 abiotic 15.181
 -76.202

 3
 rich ~
 distance 15.181
 0.662

 4
 abiotic ~
 rich 3.811
 -0.196

 5
 distance ~
 rich 10.672
 0.251

Outline

- 1. Assessing model fit: the χ^2
 - Related indices
- 2. Adjusting for non-normality
- 3. Model comparison
- 4. Testing mediation

Outline

- 1. Assessing model fit: the $\chi^{2}\,$
 - Related indices
- 2. Adjusting for non-normality
- 3. Model comparison
- 4. Testing mediation

AIC Comparisons: Because You Will Only Ever Know Your Sampled Population

f(x) = "True" value at point x

Discrepancy between fit model and f(x) conveys information loss

Kulback-Leibler Information

$$I(f,g) = \int f(x) \log \frac{f(x)}{g(x \mid \theta)} dx$$

 $I(f,g) = information\ loss\ when\ g\ is\ used\ to\ approximate\ f-integrated\ over\ all\ values\ of\ x$

Note: f(x) can be pulled out as a constant when comparing multiple models! No need to know the true value of f(x)

Models Provide Varying Degrees of Information about Reality

 $G_i(x|\theta)$ = estimate of model i at point x given parameters θ

Likelihood and Information

For likelihood, information loss is conveyed by the following with K = # of parameters:

$$log(L(\hat{\theta} \mid data)) - K = constant - \overline{I(f, \hat{g})}$$

This gives rise to Akaike's Information Criterion – lower AIC means less information is lost by a model

AIC = -2log(L(θhat|data))+2K

Principal of Parsimony:
How many parameters does it take to fit an elephant?

Correcting for Sample Size: the AICc

$$AICc = AIC + \left(\frac{2t(t+1)}{n-t-1}\right)$$

where t = number of estimated parameters in the model and n = the number of samples

Note, this is not the "consistent AIC" reported as CAIC by many pieces of software

Model Weights to Compare Models

- In a set of models, the difference between model I and the model with the best fit is Δi=AIC_i-AIC_{min}
- We can then define the relative support for a model as a model weight

$$w_i = \frac{exp\left(-\frac{1}{2}\Delta_i\right)}{\sum_{i=1}^{R} exp\left(-\frac{1}{2}\Delta_r\right)}$$

• N.B. model weights summed together = 1

AIC and SEM

- AIC = χ 2+2K
- Small Sample-Size Adjusted AIC AICc=χ2+2K*(K-1)/(N-K-1)
- Complexity Adjusted CAIC CAIC=χ2-DF*(1+log(N))
- Bayesian Information Criterion BIC=χ2-DF*log(N)

LR Testing v. AIC

- 1. SEM provides a framework that aids the application of scientific judgement to the decision problem.
- There is a growing interest in an information-based approach that avoids p-values and hypothesis tests while focusing on model selection and effect sizes.
- 3. There remain multiple viewpoints on whether hypothesis tests can or should be avoided.
- 4. The two can be used complementarily, as we shall see

AIC difference criteria

AIC diff	support for equivalency of models
0-2	substantial
4-7	weak
> 10	none

Note: Models are not required to be nested, as in using LRT tests

Burnham, K.P. and Anderson, D.R. 2002. Model Selection and Multimodel Inference. Springer Verlag. (second edition), p 70.

Outline

- 1. Assessing model fit: the χ^2
 - Related indices
- 2. Adjusting for non-normality
- 3. Model comparison
- 4. Testing mediation

Mediation & SEM

- A central goal of SEM analyses is the evaluation of mediation
- We can use complementary sources of information to determine mediation
- Models that we evaluate for AIC analyses, etc, must fit the data before using in calculating AIC differences, etc.

Questions?