

- 1. Terminology and housekeeping
  - Introduction to Causal Path Diagrams
- 2. The basics of path coefficients
- 3. The Structural Equation Meta-Model
- 4. Confronting your meta-model with data





# Representing Unexplained Correlation • Really, a correlation between residual variance • Convention: show correlation between endogenous errors but not exogenous – still there, though! $\delta_1 \longrightarrow x_1 \qquad \gamma_{11} \qquad \gamma_{21} \qquad \xi_1$

# Path Diagrams and Causality

- Sewell Wright's intention was to describe (1) causal relationships and (2) strength of associations.
- 2. Explicit consideration of causation languished for 70 years Judea Pearl and others have revived it in the science of artificial intelligence.
- 3. Pearl argues that regular mathematics is unable to express the needed expressions to represent causation. "=" versus "→"

Pearl, J. 2009. Causality. Cambridge University Press (2nd ed)

# Practical Criteria for Supporting Causal Assumptions

- 1. A manipulation of *x* would result in a subsequent change in the values of *y*
- 2. OR the values of *x* serve as <u>indicators</u> for the values of *x* that existed when effects on *y* were being generated.
- Models are properly specified to extract causal information

# Can my model be fit? *Identification*

3 = a + b 4 = 2a + b 3 = a + b + c4 = 2a + b + 3c

a and b have unique solutions

a, b, and c have no unique solution

Identified

**Underidentified** 

3 = a + b 4 = 2a + b7=3b+a

Overidentified











Questions?

- 1. Terminology and housekeeping
  - Introduction to Causal Path Diagrams
- 2. The basics of path coefficients
- 3. The Structural Equation Meta-Model
- 4. Confronting your meta-model with data











Second Rule of Path Coefficients: when variables are connected by a single causal path, the path coefficient is simply the standardized or unstandardized regression coefficient (note that a standardized regression coefficient = a simple correlation.)



 $\gamma$  (gamma) used to represent effect of exogenous on endogenous.  $\beta$  (beta) used to represent effect of endogenous on endogenous.

**Third Rule of Path Coefficients:** strength of a compound path is the product of the coefficients along the path.



Thus, in this example the effect of  $x_1$  on  $y_2 = 0.5 \times 0.6 = 0.30$ 

Since the strength of the indirect path from  $x_1$  to  $y_2$  equals the correlation between  $x_1$  and  $y_2$ , we say  $x_1$  and  $y_2$  are **conditionally independent**.

What does it mean when two separated variables are not conditionally independent?

|                       | <b>x</b> <sub>1</sub> | <b>y</b> <sub>1</sub> | y <sub>2</sub> |
|-----------------------|-----------------------|-----------------------|----------------|
| $x_1$                 | 1.0                   |                       |                |
| <b>y</b> <sub>1</sub> | 0.55                  | 1.0                   |                |
| <b>y</b> <sub>2</sub> | 0.50                  | 0.60                  | 1.0            |



 $0.55 \times 0.60 = 0.33$ , which is not equal to 0.50

The inequality implies that the true model is



**Fourth Rule of Path Coefficients:** when variables are connected by more than one causal pathway, the path coefficients are "partial" regression coefficients.

Which pairs of variables are connected by two causal paths?

answer:  $x_1$  and  $y_2$  (obvious one), but also  $y_1$  and  $y_2$ , which are connected by the joint influence of  $x_1$  on both of them.

#### And for another case:



A case of shared causal influence: the unanalyzed relation between  $x_1$  and  $x_2$  represents the effects of an unspecified joint causal process. Therefore,  $x_1$  and  $y_1$  are connected by two causal paths.  $x_2$  and  $y_1$  likewise.

# How to Interpret Partial Path Coefficients: The Concept of Statistical Control



The effect of  $y_1$  on  $y_2$  is controlled for the joint effects of  $x_1$ . With all other variables in model held to their means, how much does a response variable change when a predictor is varied?







the partial correlation between  $y_1$  and  $y_2$  is typically represented as a **correlated error term** 

This implies that some other factor is influencing  $y_1$  and  $y_2$ 

Note that total correlation between  $y_1$  and  $y_2$  = 0.50 x 0.40 + 0.86 x 0.50 x 0.92 = 0.60 (the observed corr)

**Suppression Effect** - when presence of another variable causes path coefficient to strongly differ from bivariate correlation.



**Seventh Rule of Path Coefficients:** <u>total effect</u> one variable has on another equals the sum of its direct and indirect effects.



#### **Total Effects:**

|                       | <b>X</b> <sub>1</sub> | <b>x</b> <sub>2</sub> | <b>y</b> <sub>1</sub> |
|-----------------------|-----------------------|-----------------------|-----------------------|
| y <sub>1</sub>        | 0.64                  | -0.11                 |                       |
| <b>y</b> <sub>2</sub> | 0.32                  | -0.03                 | 0.27                  |
|                       |                       |                       |                       |

#### **Eighth Rule of Path Coefficients:**

sum of all pathways between two variables (directed and undirected) equals the correlation/covariance.

note: correlation between  $x_1$  and  $y_1$  = 0.55, which equals 0.64 - 0.80\*0.11

- 1. Terminology and housekeeping
  - Introduction to Causal Path Diagrams
- 2. The basics of path coefficients
- 3. The Structural Equation Meta-Model
- 4. Confronting your meta-model with data





# What are the goals of the analysis?

Purpose of modeling effort:

- discovery?
- testing hypotheses?
- making predictions?

Focus of modeling effort:

- driver focused?
- response focused?
- mediation focused?
- theory testing focused?

#### Span of inference:

- doing inferential estimation?
- learning about processes?

# The Ebb & Flow of Model Building

- Start with big ideas and basic theory
- Focus ideas on a targeted area
- Expand conceptual model to encompass the details of the problem
  - Be thorough, otherwise you may miss important elements of suppression or confounding variables
- Prune unnecessary details
- Confront your model with data and expand and contract it as needed...

















Meta-Model Your Research

- 1. Terminology and housekeeping
  - Introduction to Causal Path Diagrams
- 2. The basics of path coefficients
- 3. The Structural Equation Meta-Model
- 4. Confronting your meta-model with data





## **Confront Model with Natural History**

- 1. Kelp moderates disturbance
  - More Kelp = Smaller Disturbance?
  - BUT no effect on kelp that isn't present...
- 2. Kelp regrows quickly
  - Dense beds after storms if nutrients present











Confront your models with data!

(then have lunch)