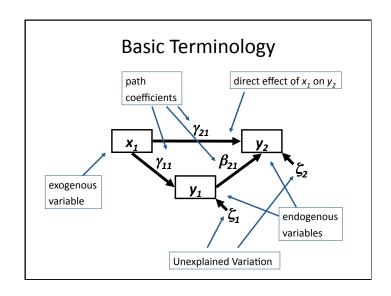
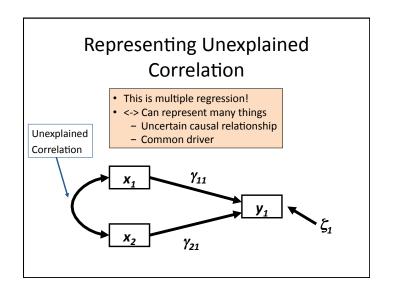


- 1. Terminology and housekeeping
 - Introduction to Causal Path Diagrams
- 2. The basics of path coefficients
- 3. The Structural Equation Meta-Model
- 4. Confronting your meta-model with data





Representing Unexplained Correlation • Really, a correlation between residual variance • Convention: show correlation between endogenous errors but not exogenous – still there, though! $\delta_1 \longrightarrow x_1 \qquad \gamma_{11} \qquad \gamma_{21} \qquad \xi_1$

Path Diagrams and Causality

- Sewell Wright's intention was to describe (1) causal relationships and (2) strength of associations.
- 2. Explicit consideration of causation languished for 70 years Judea Pearl and others have revived it in the science of artificial intelligence.
- 3. Pearl argues that regular mathematics is unable to express the needed expressions to represent causation. "=" versus "→"

Pearl, J. 2009. Causality. Cambridge University Press (2nd ed)

Practical Criteria for Supporting Causal Assumptions

- 1. A manipulation of *x* would result in a subsequent change in the values of *y*
- 2. OR the values of *x* serve as <u>indicators</u> for the values of *x* that existed when effects on *y* were being generated.
- Models are properly specified to extract causal information

Can my model be fit? *Identification*

3 = a + b 4 = 2a + b 3 = a + b + c4 = 2a + b + 3c

a and b have unique solutions

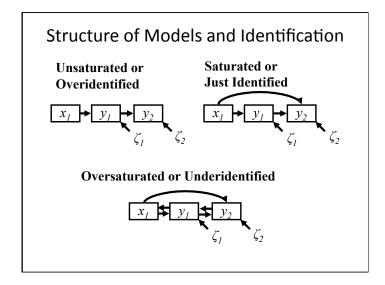
a, b, and c have no unique solution

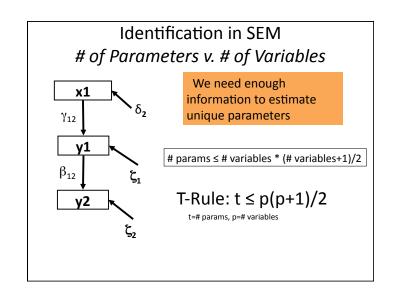
Identified

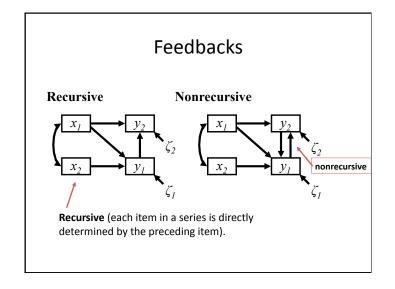
Underidentified

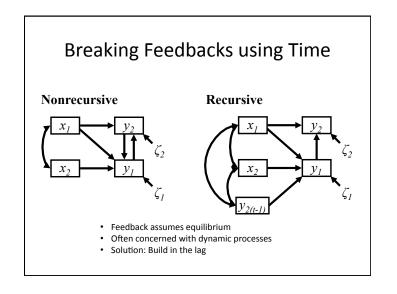
3 = a + b 4 = 2a + b7=3b+a

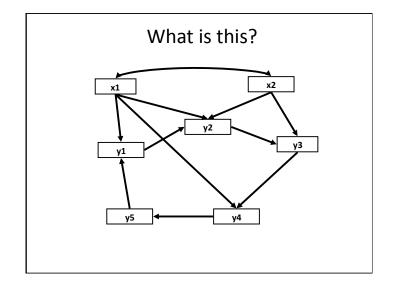
Overidentified





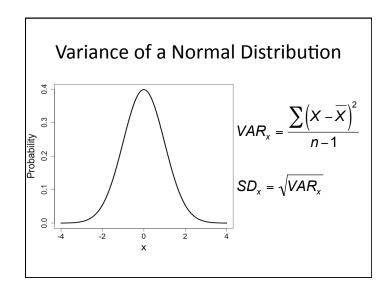


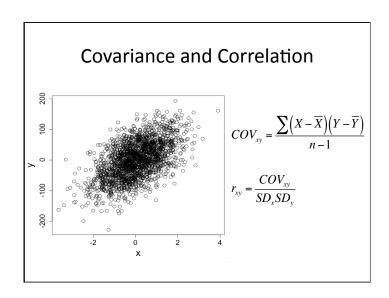




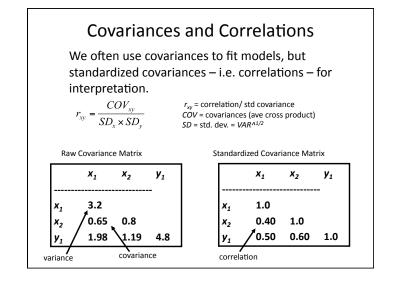
Questions?

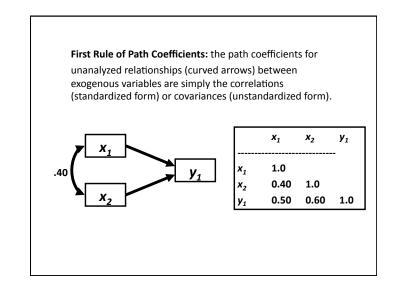
- 1. Terminology and housekeeping
 - Introduction to Causal Path Diagrams
- 2. The basics of path coefficients
- 3. The Structural Equation Meta-Model
- 4. Confronting your meta-model with data



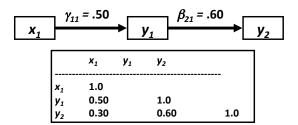






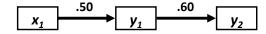


Second Rule of Path Coefficients: when variables are connected by a single causal path, the path coefficient is simply the standardized or unstandardized regression coefficient (note that a standardized regression coefficient = a simple correlation.)



 γ (gamma) used to represent effect of exogenous on endogenous. β (beta) used to represent effect of endogenous on endogenous.

Third Rule of Path Coefficients: strength of a compound path is the product of the coefficients along the path.

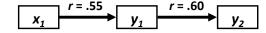


Thus, in this example the effect of x_1 on $y_2 = 0.5 \times 0.6 = 0.30$

Since the strength of the indirect path from x_1 to y_2 equals the correlation between x_1 and y_2 , we say x_1 and y_2 are **conditionally independent**.

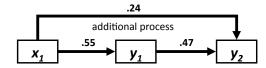
What does it mean when two separated variables are not conditionally independent?

	x ₁	y ₁	y ₂
x_1	1.0		
y ₁	0.55	1.0	
y ₂	0.50	0.60	1.0



 $0.55 \times 0.60 = 0.33$, which is not equal to 0.50

The inequality implies that the true model is

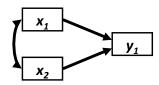


Fourth Rule of Path Coefficients: when variables are connected by more than one causal pathway, the path coefficients are "partial" regression coefficients.

Which pairs of variables are connected by two causal paths?

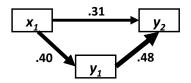
answer: x_1 and y_2 (obvious one), but also y_1 and y_2 , which are connected by the joint influence of x_1 on both of them.

And for another case:

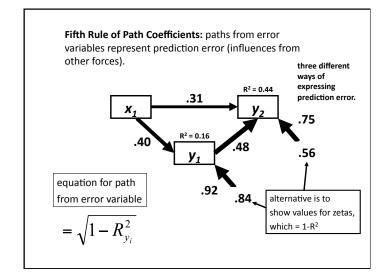


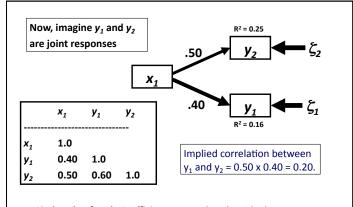
A case of shared causal influence: the unanalyzed relation between x_1 and x_2 represents the effects of an unspecified joint causal process. Therefore, x_1 and y_1 are connected by two causal paths. x_2 and y_1 likewise.

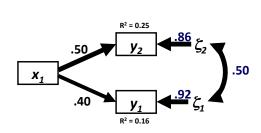
How to Interpret Partial Path Coefficients: The Concept of Statistical Control



The effect of y_1 on y_2 is controlled for the joint effects of x_1 . With all other variables in model held to their means, how much does a response variable change when a predictor is varied?





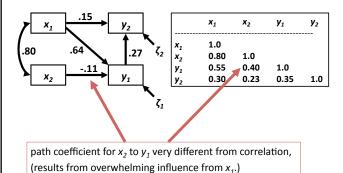


the partial correlation between y_1 and y_2 is typically represented as a **correlated error term**

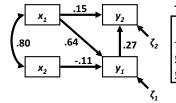
This implies that some other factor is influencing y_1 and y_2

Note that total correlation between y_1 and y_2 = 0.50 x 0.40 + 0.86 x 0.50 x 0.92 = 0.60 (the observed corr)

Suppression Effect - when presence of another variable causes path coefficient to strongly differ from bivariate correlation.



Seventh Rule of Path Coefficients: <u>total effect</u> one variable has on another equals the sum of its direct and indirect effects.



Total Effects:

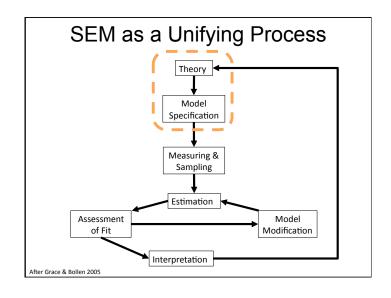
	X ₁	x ₂	y ₁
y ₁	0.64	-0.11	
y ₂	0.32	-0.03	0.27

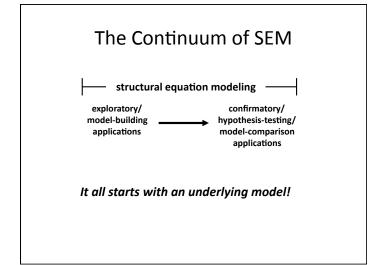
Eighth Rule of Path Coefficients:

sum of all pathways between two variables (directed and undirected) equals the correlation/covariance.

note: correlation between x_1 and y_1 = 0.55, which equals 0.64 - 0.80*0.11

- 1. Terminology and housekeeping
 - Introduction to Causal Path Diagrams
- 2. The basics of path coefficients
- 3. The Structural Equation Meta-Model
- 4. Confronting your meta-model with data





What are the goals of the analysis?

Purpose of modeling effort:

- discovery?
- testing hypotheses?
- making predictions?

Focus of modeling effort:

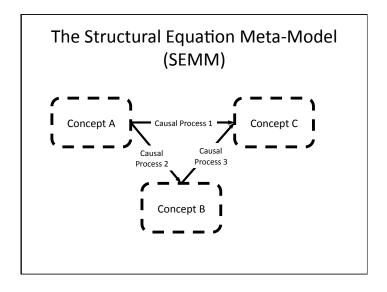
- driver focused?
- response focused?
- mediation focused?
- theory testing focused?

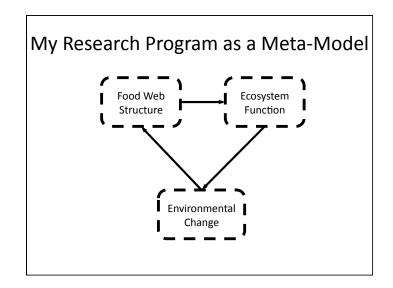
Span of inference:

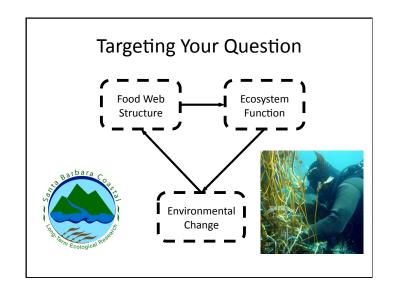
- doing inferential estimation?
- learning about processes?

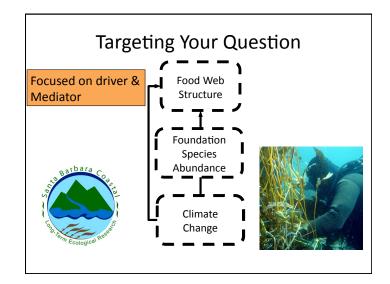
The Ebb & Flow of Model Building

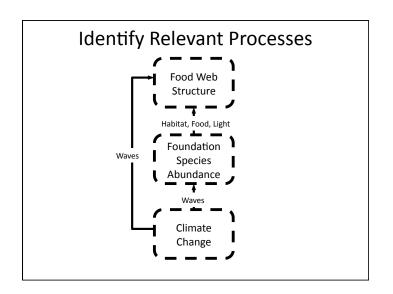
- Start with big ideas and basic theory
- Focus ideas on a targeted area
- Expand conceptual model to encompass the details of the problem
 - Be thorough, otherwise you may miss important elements of suppression or confounding variables
- Prune unnecessary details
- Confront your model with data and expand and contract it as needed...

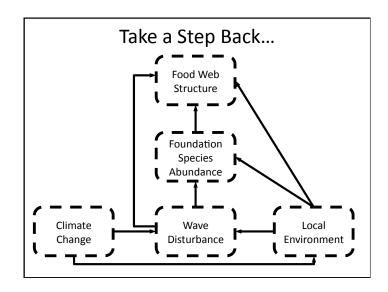


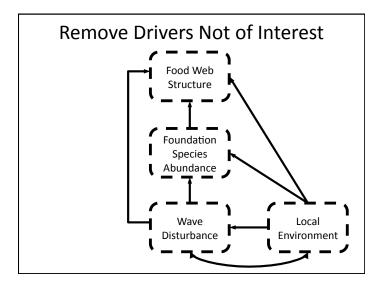






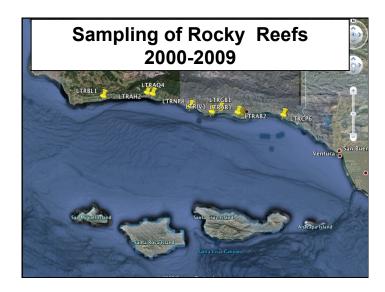


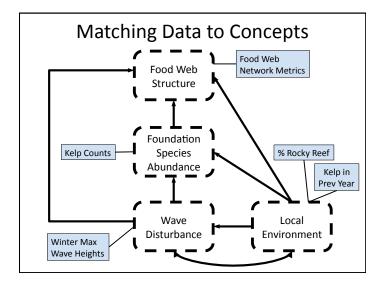




Meta-Model Your Research

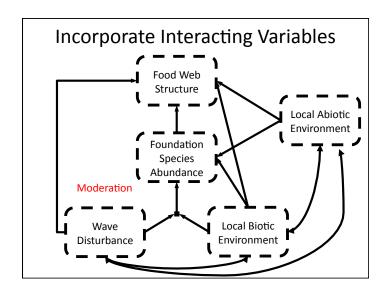
- 1. Terminology and housekeeping
 - Introduction to Causal Path Diagrams
- 2. The basics of path coefficients
- 3. The Structural Equation Meta-Model
- 4. Confronting your meta-model with data

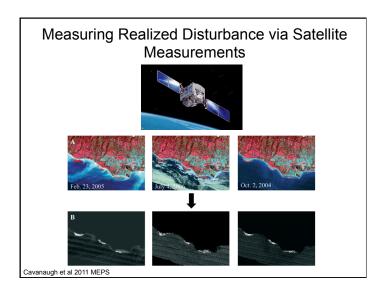


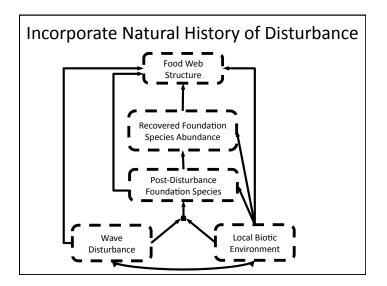


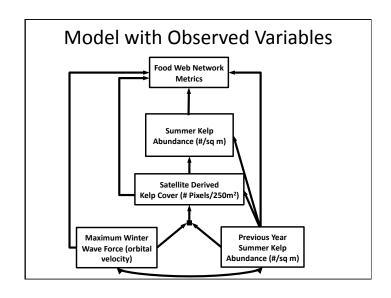
Confront Model with Natural History

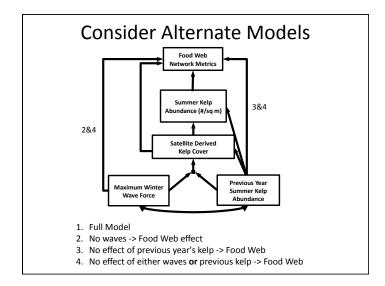
- 1. Kelp moderates disturbance
 - More Kelp = Smaller Disturbance?
 - BUT no effect on kelp that isn't present...
- 2. Kelp regrows quickly
 - Dense beds after storms if nutrients present











Confront your models with data!

(then have lunch)