Advanced Topics in SEM for Ecology
& Evolutionary Biology

Jarrett E. K. Byrnes

The Future

NEXT EXIT N

An Advanced Outline

Revisiting Sample Size

Revisiting Dsep in lavaan

Multilevel Generalized Piecewise SEM
Additional Spatial Techniques

Panel Models for Lagged Time Effects

o vk wnN e

Growth Curve Models & Time Series

Revisiting Sample Size

. The further you are in a model from an exogenous data-

generating, the weaker it's influence.

. Our ability to detect the these tapering effect sizes is

proportional to our information (especially sample size) and the
number of parameters being estimated.

. Our sample size sets an upper limit for the complexity of the

model we can obtain.

. Rules of thumb for sample size -- we hope to have at least 5

samples per estimated parameter and would prefer 20 samples
per parameter.

. Path coefficients add to our parameter list, not the variances

Number of Estimated Parameters

pesticide There are a total of 12

parameters shown.

However, only 6 of these
require unique
information...

Chi-sqr = 5.147; d3; p=.161
AIC =29.147; NPAR =12
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Parameters Needing Unique Information

pesticide

LNGammarids

75

18 - @
Macroalgae @—{ Epiphytes

Variances & covariance of
exogenous variables can be
obtained from the data. For
“pesticide”, “Macroalgae”, and
“Grass", this yields 4
parameters.

Error variances (and R-
sqrs) for endogenous
variables are calculated

N

-14
Chi-sqr =5.147; df = 3; p = .161
AIC =29.147; NPAR =12

from other parameters.
This is 2 parameters.

Only 6 parameters require unique
information.
Samples/parameters = 40/6 = 6.7.

Removing Unimportant Paths

For our more complex model,
we would want to set non-
contributing paths to zero to
minimize estimated
parameters.

‘ Macroalgae F@—{ Inchla

chi-sqr = 9.545; df = 6; p = .145;

AIC = 39.545; NPAR =15

Here estimated parameters =
8, samples/parameters = 5.

If we can combine
Caprellids and Gamarids,
we could reduce
parameters further.
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D-Separation & the 2

abiotic

distance

1. x2gives you information regarding the discrepancy between your
observed and predicted covariance matrix.

2. The test of D-Separation gives you information regarding whether you
have missed key associations between variables.

3. We can test for D-Separation in recursive models without correlated

error simply
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D-Separation in lavaan

distance

hetero

Two options
1) Feed model to DAG in ggm

#Full Mediation

distModel2 <- 'rich ~ abiotic + hetero
hetero ~ distance
abiotic ~ distance’

D-Separation in lavaan

abiotic

distance

hetero

2) Use script (and this will be in future lavaan versions)

> source("./dsepTest.R")
> dsepTest(distFit2)
Sctest

[1] 21.86173

$df
[1] 4

$pvalue
[1] 0.0002135289

D-Separation in lavaan

distance

> dsepTest(distFit2, showall=T)
Sctest
[1] 21.86173

$df
[1] 4

$pvalue
[1] 0.0002135289

$dsep

Pair Conditioning P.t.
distance distance,rich hetero,abiotic 9.564005e-05
abiotic abiotic,hetero distance 1.871306e-01
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D-Separation in Piecewise models
beyond linear regression

1. We have models that deal with
1. Hierarchical/nested data (mixed models)

2. Nonlinear relationships
3. Non-normal error distributions (glms)

2. The test of the effect of a variable in one of
those models serves the same purpose as a
partial correlation test in a linear model

3. These p-values can be used for tests of D-
Separation

Shipley, B. (2009). Confirmatory path analysis in a generalized multilevel
context. Ecology, 90, 363-368.

The True Model

Degree | | Dateof Diameter

Lati —
atitude Days Bud Burst Growth

> Survival

* Simulated data from a fit model

* 20 sites

* 5 trees measured per site

* Replicated measurements biannually from "1970-2006"

The Simulated Data
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Piecewise Hierarchical Model Fitting

| lat |—'| DD |—'| Date |—’| Growth l—'| Live |

#e.g., for DD -> lat
Shipley<-read.table("./Shipley.dat")
library(nlme)

#model with random intercept

#tree nested in site

Date dd<-lme(Date~DD,data=Shipley,
random=~1|site/tree,na.action=na.omit)

The Basis Set Needs to Accommodate
the Nested Structure

| lat |—'| DD |—'| Date |—’| Growth l—'| Live |

D-sep claim of Variable whose partial Null probability
independence Mixed modelt regression slope should be zero (distribution)
(X1, X3) | {Xa} X; ~ X, + X, + (1]site) + (1 | tree) X 0.9373 (normal)
(X1, Xq) | {X3 X3 ~ X3+ X; + (1]site) + (1| tree) X, 0.3837 (normal)
X1, X5) | {Xa Xs ~ Xs + Xi + (1 ]site) + (1 | tree) X 0.2800 (binomial)
(X X | {X1, X3} Xy~ Xz + Xy + X5 + (1]site) + (1] tree) X, 0.9839 (normal)
(X2, Xs) éx,, X4; X5 ~ Xs + Xi + Xa + (1[site) + (1] tree) X, 0.9839 (binomial)
&, X3)| {Xo, X5 X5~ Xa + X + X3 + (1]site) + (1] tree) X; 0.1890 (binomial)

To calculate the partial regression slope, use hierarchical models

Evaluate Independence Claims with
Hierarchical Models

| lat |—’| DD |—’| Date |—'|Growth|—'| Live |

#Independence claim: (Date,lat)|{DD}

fitl<-lme(Date~DD+lat,data=Shipley,
random=~1|site/tree,na.action=na.omit)

summary(fitl)$tTable

Evaluate Independence Claims with
Hierarchical Models

| lat |—’| DD |—’| Date |—'|Growth|—'| Live |

#Independence claim: (Date,lat)|{DD}

fitl<-lme(Date~DD+lat,data=Shipley,
random=~1|site/tree,na.action=na.omit)
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Evaluate Independence Claims with
Hierarchical Models

| lat P——4 DD F——4 Date F——{ Growth P——4 Live |

> summary(fitl)$tTable

Value Std.Error DF t-value p-value
(Intercept) 198.915223483 7.337099813 1330 27.11087876 3.185667e-129
DD -0.497660383 0.004936809 1330 -100.80608521 0.000000e+00
lat -0.009051378 0.113476607 18 -0.07976426 9.373049e-01

We Have Nonlinear Relationships with
Non-Normal Distributions
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Use generalized linear models - e.g., logit curve with a binomial error

Evaluate Independence Claims with
GLMMs

| lat F——{ DD F——4 Date F——{ Growth f—-{ Live |

###need 1lmed4 for the glmms
library(lme4)

#Independence claim with glmm (Live,lat)|{Growth}

fitd<-lmer (Live~Growth+lat+(1l|site)+(1l]|tree),
data=Shipley, na.action=na.omit,
family=binomial(link="1logit"))

Evaluate Independence Claims with
GLMMs

| lat F——{ DD F——4 Date F——{ Growth f—-{ Live |

> summary(fit4)@coefs

Estimate Std. Error z value Pr(>|z|)
(Intercept) -14.43837636 2.65394004 -5.440355 5.317446e-08
Growth 0.35530576 0.04554481 7.801235 6.130440e-15
lat 0.03051257 0.02819180 1.082321 2.791099e-01
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Putting it All Together in Shipley's Test

| lat |—'| DD |—'| Date |—’| Growth l—'| Live |

#sorry, you have to do this by hand
#note, since we're logging things
#we can use log(a)+log(b) = log(a*b)

> fisherC <- -2* 1og(9.373049e-01 * 3.836896e-01 *
7.667083e-01 * 2.791099e-01 *
3.159286e-01 * 1.519170e-01)

>1-pchisq(fisherC, 2*6)

[1] 0.5116698

AIC and D-Sep

| lat |—'| DD |—'| Date |—’| Growth l—'| Live |

AIC = -2C+ 2K

Why? Shipley has proven that:

-2 In(L(model | data)) = -2 X In(p) = Fisher's C

Shipley, B. In Press. The AIC model selection method applied to path analytic models compared
using a d-separation tests. Ecology.

AIC and D-Sep

| lat F——{ DD F——4 Date F——{ Growth f—-{ Live |

> #each piece has 5 parameters - slope, intercept,
> #variance, and random variance for
> #slope & intercept, so, K=5%4

> fisherC + 2*(5%4)
[1] 51.20225

Final Thoughts on Piecewise Fits

* You can use anything: generalizes linear models,
mixed models, generalized least squares fits with
temporal or spatial autocorrelation built-in

¢ Currently, it's difficult to code complex models,
but that does not mean they should not be
attempted!

* Bayesian methods also provide flexible
frameworks for piecewise models
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Spatial Effects

There are two key issues regarding space:

(1) Are their things to learn about the other factors that could
explain variations in the data that vary spatially?

(2) Do we have nonindependence in our residuals?

Recent reference on the subject:
Hawkins, BA (2011) Eight (and a half) deadly sins of spatial analysis. Journal of
Biogeography. doi:10.1111/j.1365-2699.2011.02637.x

Spatial References

Reference where mechanistic questions have been asked:

Grace JB and Guntenspergen, GR (1999) The effects of landscape
position on plant species density: Evidence of past
environmental effects in a coastal wetland. Ecoscience Vol.
6, pp. 381-391.

(Distance from mouth of river and edge of shore served as
proxies for past storm-driven saltwater intrusions.)

Mancera et al. (2005) Fine-scale spatial variation in plant species
richness and its relationship to environmental conditions in
coastal marshlands. Plant Ecology 178:39-50.

(Showed fine-scale matching of plant to abiotic conditions in
severe environments. No evidence of mass effects.)

Spatial References

Reference where autocorrelation has been adjusted for in SEM

studies:

Harrison, S and Grace, JB (2007) Biogeographic affinity
contributes to our understanding of productivity-richness
relationships at regional and local scales. American
Naturalist. 170:55-S15.

Degrees of freedom and sample size adjusted using Moran's |.
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Adjusting for Spatial Autocorrelation
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Longitudinal Studies — Time-Step (Panel)

Model
0

fidelity for A. lacertosa
beetle,

flea beetle
response
to food

beetle,

flea beetle
response
to food

Larson, DL and Grace, JB (2004) Temporal Dynamics of Leafy Spurge (Euphorbia esula)
and Two Species of Flea Beetles (Aphthona spp.) Used as Biological Control

Agents. Biological Control 29:207-214.

Time-independent dynamics in a Panel Model

fidelity for A. lacertosa
beetle,, beetle,,

flea beetle flea beetle
response response
to food to food

_| '_
%l fidelity for leafy spurge SPUrgey

soil
texture

Larson, D.L., Grace, J.B., and Larson, J.L. 2008. Long-term dynamics of leafy spurge
(Euphorbia esula) and its biocontrol agent, the flea beetle Aphthona lacertosa.
Biological Control 47:250-256.
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Latent Trajectory Models for Timeseries &
Repeated Measures

100
1

80

Species Richness
40

20

Year
Grace, J.B., Keeley, J., Johnson, D., and Bollen, K.A. 2012. Structural equation
modeling and the analysis of long-term monitoring data. In: Gitzen, R.A.,
Millspaugh, J.J., Cooper, A.B., and Licht, D.S. Design and Analysis of Long-Term
Ecological Monitoring Studies. Cambridge University Press.

Latent Trajectory Models for
Repeated Measures

<«—— upper-level covariate

random slopes and

intercepts @
Lo | Lo J L | [y ]
precip precip precip precip
year0 yearl year2 year3

™~

lower-level covariate

Means Structures: Acquiring Intercepts
from SEM!

A

Kelp

meanMod<-"'Giant.Kelp ~ Purple.Urchins' \

meanFit <- sem(meanMod, data=kfm, meanstructure=T) Cl

Urchins

3/27/13
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Means Structures: Acquiring Intercepts

from SEM!
Urchins » Kelp "~
&
Estimate Std.err Z-value P(l1zl)
Regressions:
Giant.Kelp ~

Purple.Urchin -0.366 0.029 -12.397 0.000
Intercepts:

Giant.Kelp 1.590 0.076 20.791 0.000

Variances:
Giant.Kelp 0.579 0.045 12.961 0.000

Latent Variable Growth Model

Initial
Density

intercept

S S S

Example: Channel Islands Kelp Dynamics

gMod<-"'
Initial =~ 1*KelpTl + 1*KelpT2 + 1*KelpT3 + 1*KelpT4
Growth =~ @*KelpT1l + 1*KelpT2 + 2*KelpT3 + 3*KelpT4

gFit<-growth(gMod, data=kelpTseries)

Example: Channel Islands Kelp Dynamics

R?=0.5-0.67

Intercepts:
KelpT1
KelpT2
KelpT3
KelpT4
Initial
Growth

Conclusions:

At minimum, no
linear trajectory.

At most, kelp
densities stay
constant with
some small
variation

S SN NS

Estimate Std.err Z-value P(Glzl)

0.000
0.000
0.000
0.000

0.763 0.096 7.976 0.000
0.027 0.032 0.837 0.403
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Growth Models and Autoregressive
Relationship

Growth Models and Autoregressive

*a=0.266

« Fit not different

Relationship
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Other Processes Affect Growth Curves

Nutrient
Delivery

Other Processes Affect Growth Curves

Nutrient
Delivery

Kelp in Kelp in Kelp in Kelp in
— > — *a=0.304
Yeatlr l]a Yezir 2]a Ye?r 3]a Yezir 4
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Final Comments on Advanced Topics

1. Often, our concern for spatial and temporal
effects is due to our deep ecological fear of
pseudoreplication.

2. If you can account for the drivers that create
spatial or temporal blocks, you gain
information.

3. Many cases are more easily dealt with in a
peicewise approach — still a developing story.

4. But, many special cases already have
techniques in the literature that YOU can now
use!
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