

- 1. What is a composite variable?
- 2. Using Composites for nonlinear variables
- 3. Composites v. Latents when and why?
- 4. Comparison in context
- 5. Treatment as a Composite variable

- 1. What is a composite variable?
- 2. Using Composites for nonlinear variables
- 3. Composites v. Latents when and why?
- 4. Comparison in context
- 5. Treatment as a Composite variable

A Simple Nonlinear Model cover 58.0 rich $R^2=0.16$ coversq > summary(noCompFit) Estimate Std.err Z-value P(>|z|)Regressions: rich ~ 57.999 18.613 3.116 0.002 cover -28.577 12.176 0.019 coverSQ -2.347

#Create a new nonlinear variable in the data keeley<-within(keeley, coversQ<-cover^2) #Now, for a model noCompModel <- 'rich ~ cover + coversQ' noCompFit <- sem(noCompModel, data=keeley)

A Note About the Latent Nature of Composite cover 58.0 coverEffect rich Response variables act like latent variable indicators

- Therefore, responses must *share* some variance.
- Rules that applied to identifiably of latent variables also apply to composites.
- One composite per response if composite error = 0. If composite has multiple responses, error variance should be free.

Exercise: An Abiotic Composite Model

- 1. Fit this model start with a regression
- Compare the effect of fixing the abiotic loading on abiotic effect to the coefficient from the regression to fixing the abioticEffect on firesev to 1.

- 1. What is a composite variable?
- 2. Using Composites for nonlinear variables
- 3. Composites v. Latents when and why?
- 4. Comparison in context
- 5. Treatment as a Composite variable

Questions to Ask of Your Latent/Composite Variables

- 1. What is the direction of causality?
- 2. Are the indicators in a block interchangeable?
- 3. Do indicators covary because of joint causes?
- 4. Do indicators have a consistent set of causal influences?

- 1. What is a composite variable?
- 2. Using Composites for nonlinear variables
- 3. Composites v. Latents when and why?
- 4. Comparison in context
- 5. Treatment as a Composite variable

Specific model without composites provides similar answers.

Testing our Confidence in Composites

- 1. What is a composite variable?
- 2. Using Composites for nonlinear variables
- 3. Composites v. Latents when and why?
- 4. Comparison in context
- 5. Treatment as a Composite variable

Previous Model Unstandardized

- 1. Rhodymenia is not good food.
 - Urchins eat more, but produce less gonad
- 2. Performance is similar with *Macrocystis* or Mixture diet

Treatment as a Composite Affecting Multiple Responses #read in and binary-ize the treatment urchinData<-read.csv("./urchin_ex_sem.csv") source("./makeBinaryTreatments.R") binTrt<-makeBinaryTreatments(urchinData, "treatment") urchinData<-cbind(urchinData, binTrt)

A Composite Treatment Model A Composite Treatment Model GONAD_INDEX Feeding.rate.dry Treatment <~ MAPY + .002*R Feeding.rate.dry ~ Treatment GONAD_INDEX ~Treatment + Feeding.rate.dry '

A Composite Conclusion

- Composite variables are useful as variables to gather information about multiple aspects of a single effect.
- Excellent for representing nonlinearities.
- Often what ecologists think of in terms of aggregate variables.
- Provide method of incorporating complex treatment effects.