
Finding and Gathering Data Patrick Kearns 2/5/14

Outline

- (1) Defining a Question
- (2) Inclusion/exclusion criteria
- (3) Data collection
- (4) Data evaluation
- (5) Conducting the analysis
- (6) Data presentation
- (7) Interpretation of results

Defining a Question

- Need a sound question as to not introduce bias into the analysis.
- Without a solid Q, results are difficult to analyze and interpret post hoc.
- Heterogeneity between studies should not be considered important.
- Scoping for literature can help define whether a analysis is possible.
 - Get keywords to use in further searching.

Elements of a Question

- (1) Define a subject or population
- (2) Treatment/variable
- (3) Response
- (4) Control/Comparison group

Other question related items

- Study design of studies should be noted and tested for bias
- Define significance levels
- Subgroups related to Q can be incorporated if the data is discrete.

Study Inclusion

- Develop before performing search
- Can highly influence the outcome of the study
 - How?

Inherent bias associated with inclusion/exclusion

- Differs between people
- Good to have a second reader review the excluded studies (Kappa, pg 50)

BOX 4.6. Kappa assessment: A worked example.

The table below shows the number of references accepted and rejected by two reviewers in relation to one another.

		Reviewer 2		
0.5	V. 177.794	Reject	Accept	Total
	Reject	20	19	39
Reviewer 1	Accept	1	110	111
	Total	21	120	150

Agreement expected by chance is calculated as: (row total × column total)/overall total, providing a second matrix, shown below.

		Reviewer 2		
3.00		Reject by chance	Accept by chance	Total
	Reject by chance	5.46	33.54	39
Reviewer 1	Accept by chance	15.54	95.46	111
	Total	21	129	150

Actual agreement is calculated as the number of times reviewers agreed (i.e., both reject or both accept, from first matrix): 110 + 20 = 130.

Similarly, expected agreement by chance is (from second matrix): 5.46 + 95.46 = 100.92. Kappa is used to calculate the agreement above and beyond the agreement expected by chance.

K = (actual agreement - expected agreement)/(total number of trials - expected agreement)= (130 - 100.92) / (150 - 100.92) = 29.08 / 49.08 = 0.593

BOX 4.6. Kappa assessment: A worked example.

The table below shows the number of references accepted and rejected by two reviewers in relation to one another.

Reviewer 2	and the			-
	ED can be	A COLUMN TO A	make and	-
	DE COL	115-30	4-6	

:DE	C. 177.290	Reject	Accept	Total
	Reject	20	19	39
Reviewer 1	Accept	1	110	111
	Total	21	120	150

Agreement expected by chance is calculated as: (row total × column total)/overall total, providing a second matrix, shown below.

Reviewer 2

		Reject	Accept	70 - 1
		by chance	by chance	Total
	Reject by chance	5.46	33.54	39
Reviewer 1	Accept by chance	15.54	95.46	111
	Total	21	129	150

Actual agreement is calculated as the number of times reviewers agreed (i.e., both reject or both accept, from first matrix): 110 + 20 = 130.

Similarly, expected agreement by chance is (from second matrix): 5.46 + 95.46 = 100.92. Kappa is used to calculate the agreement above and beyond the agreement expected by chance.

K = (actual agreement - expected agreement)/(total number of trials - expected agreement)= (130 - 100.92) / (150 - 100.92) = 29.08 / 49.08 = 0.593

BOX 4.6. Kappa assessment: A worked example.

The table below shows the number of references accepted and rejected by two reviewers in relation to one another.

Reviewer 2

225	KS-0.00096	Reject	Accept	Total
	Reject	20	19	39
Reviewer 1	Accept	1	110	111
	Total	21	120	150

Agreement expected by chance is calculated as: (row total × column total)/overall total, providing a second matrix, shown below.

Reviewer 2

		Reject	Accept	
		by chance	by chance	Total
	Reject by chance	5.46	33.54	39
Reviewer 1	Accept by chance	15.54	95.46	111
	Total	21	129	150

Actual agreement is calculated as the number of times reviewers agreed (i.e., both reject or both accept, from first matrix): 110 + 20 = 130.

Similarly, expected agreement by chance is (from second matrix): 5.46 + 95.46 = 100.92. Kappa is used to calculate the agreement above and beyond the agreement expected by chance.

K = (actual agreement – expected agreement)/(total number of trials – expected agreement)
= (130 - 100.92) / (150 - 100.92) = 29.08 / 49.08 = 0.593

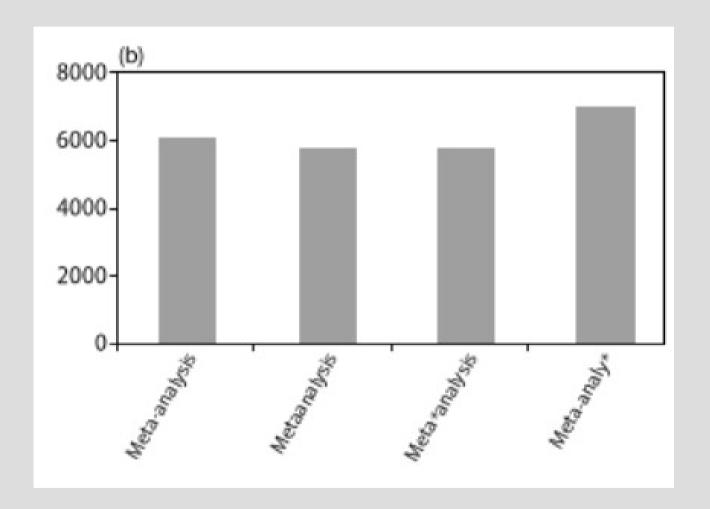
K= (actual agreement – expected agreement)/ (total # trials – expected agreement)

K=(130-100.92)/(150-100.92)=0.593

Inclusion To-do's

- Keep good records
- Its key to eliminate duplicate studies
- How do the studies relate to the scope of the analysis?

Data Collection

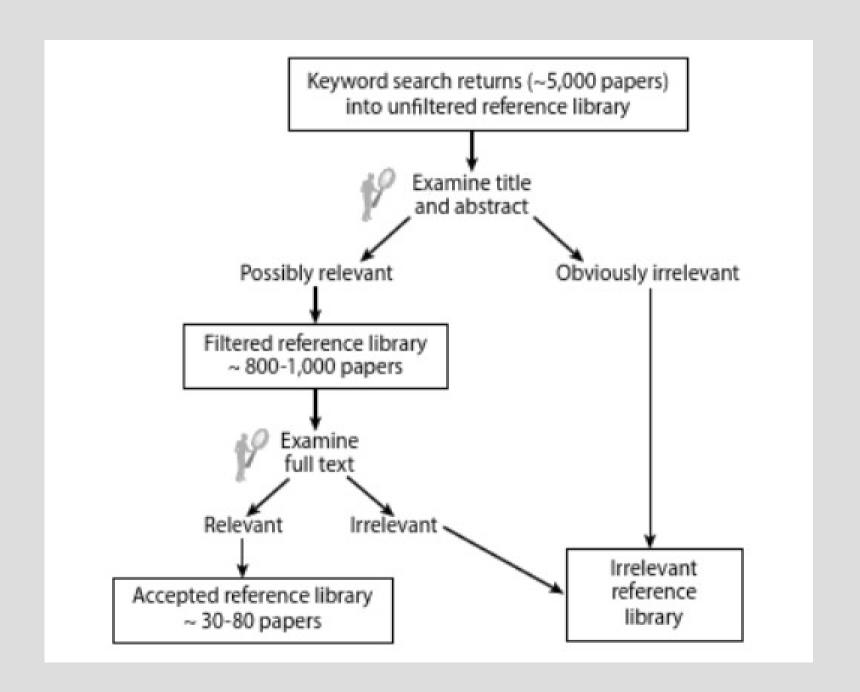


Search Criteria

- Need many sources
- Unwise to over represent a small number of organisms
 - Why is this bad?
 - Can it be avoided?
- Document each step of the way
- Can induce bias through poor methodology

Searching for Data

- Use key words from scoping
- Use modifiers to widen results pool (AND, OR, *, ?)
- Is the question feasible or make sense?
 - Redesign question


Searching for Data

- Use key words from scoping
- Use modifiers to widen results pool (AND, OR, *, ?)
- Is the question feasible or make sense?
 - Redesign question

How does environmental forcing affect microbial functions?

Data sources

- Published literature
 - Always good to check citation section
- Grey literature
 - Book chaps., thesis's, gov. docs., bulletins, fact sheets, conference proceedings, posters
- Black literature
 - Field/lab notes

Data Evaluation

- Nonindependence
 - Factors influencing the outcome (e.g. caging)
 - Trying to test too many factors, they can be correlated
- Missing Data

Conducting the analysis

- Effect size
- Weighting
- Model choice
- Heterogeneity
- Missing data

Presenting data

- Similar to a research article
 - Introduction, Materials and Methods, Results, Discussion
 - M&M should allow another person to replicate your study
 - Results should include what groups/variable included as well as effect size, 95% CI

Data Interpretation

- How do your decisions during the analysis affect the outcome?
- Are the findings considered in the light of biological/practical significance?
- Highlight areas that are in need of analysis