Missing Data

Patrick Kearns
Tenzing Ingty
3/5/2014

What is missing data?

- What do we mean by missing data?
 - Not in the right form or easily accessed
 - Has data, but is missing key things (e.g. sample size)
 - No useful data (e.g. on p-values)
 - Significance of p-values?
 - All the above

What are we missing?

- Correlations
- Variance
- Sample sizes
- Means

Usefulness for meta- analysis	Study statistics	What is available	Addressing what's missing
high	Completely reported	Has all the data for → inclusion	Nothing missing!
	Selectively reported	All the data are avail- able but not in forms that are easily integrated 2553 into meta-analysis (e.g., data in figures, sample sizes need to be determined from table, t-tests and means are not reported, etc.)	Extract data from figure or tables (see Specifical Chapter 5), convert a 037 available statistics (e.g., t-test into effect size)
ı	Partially reported	Has some data (e.g., → sample sizes) but is missing information that cannot be estimated directly from what is available (e.g., variance estimates)	Recalculation or conversion of avail- able statistics (back calculation from P-values), or within- study imputation methods.
'cba63ea7a	Qualitatively reported 67da037cbae	No useful data except for P-values or discus- sion regarding the significance or non- significance of analysis	Recalculation of sta- tistics, or use within- study imputation methods or multiple- imputation methods
low	Unreported	No statistics or data → are available, although may have specified a protocol for the analysis in the Methods section	Exclude from meta- analysis or use an alternative approach to meta-analysis (e.g., vote-count methods)

Why are we missing data?

- Publication page/letter limits
- Lack of publication of null results
- Perceived lack of importance
 - P-value

How does it affect us?

- Exclude studies
 - Too much exclusion can induce type II error
 - Study quality?
- Too small a sample size can under/overestimate effect size

How to handle it

- Talk with other researchers
- Algebraic recalculations
 - Able to convert p-values and other stats metrics to usable data
 - Rely on the authors to have data/stats that don't violate assumptions of normality

Hedge's D from T-Test

 $rac{d}{X}$ effect size sample mean T and C treatment and control groups SD standard deviation

n sample size

J bias correction factor

s pooled SD

$$d = \frac{(\overline{X}_{T} - \overline{X}_{C})}{s} J \qquad J = 1 - \frac{3}{4(n_{T} + n_{C}) - 9}$$
$$s = \sqrt{\frac{(n_{T} - 1)SD_{T}^{2} + (n_{C} - 1)SD_{C}^{2}}{n_{T} + n_{C} - 2}}$$

$$d = t \sqrt{\frac{n_T + n_C}{n_T n_C}} \quad d = \frac{2t}{\sqrt{n_{total}}} \quad d = t_R \sqrt{\frac{2(1 - r_R)}{n_{total}}}$$

Hedge's D from ANOVA

 $rac{d}{X}$ sample mean T and C treatment and control groups SD standard deviation n sample size J bias correction factor s pooled SD

$$d = \frac{(\overline{X}_T - \overline{X}_C)}{s} J \qquad J = 1 - \frac{3}{4(n_T + n_C) - 9}$$
$$s = \sqrt{\frac{(n_T - 1)SD_T^2 + (n_C - 1)SD_C^2}{n_T + n_C - 2}}$$

$$\left|d\right| = \sqrt{\frac{F(n_T + n_C)}{n_T n_C}} \quad \left|d\right| = 2\sqrt{\frac{F}{n_{total}}}$$

Correlation coefficient (r)

key terms

definition

Pearson product-moment correlation

x and vvariables under analysis

total sample size n

$$r = \frac{n\sum x_{i}y_{i} - \sum x_{i}\sum y_{i}}{\sqrt{[n\sum x_{i}^{2} - (\sum x_{i})^{2}][n\sum y_{i}^{2} - (\sum y_{i})^{2}]}}$$

linear regression

$$r = \beta \left(\frac{SD_x}{SD_y} \right)$$
 if $y = \alpha + \beta x$ $r \approx r_b$

SD = standard deviation, $\alpha = \text{intercept}$, $\beta = \text{slope}$

biserial $r(r_h)$ point-biserial $r(r_{nh})$

$$r \approx r_b$$

$$r_b = \frac{r_{pb} \sqrt{n_T n_C}}{u(n_T + n_C)}$$

 $\mu = \text{ordinate of unit normal distribution (see Terrell 1982)}$

independent t-test

$$r_{pb} = \sqrt{\frac{t^2}{t^2 + n_T + n_C - 2}} \quad r_{pb} = \sqrt{\frac{t^2}{t^2 + df}} \quad \left| r_{pb} \right| = \frac{P}{\sqrt{P^2 + 4}} \qquad r = \sqrt{\frac{d^2 n_T n_C}{d^2 n_T n_C + n(n-1)}}$$

df = degrees of freedom, P = P-value

Hedges' d

$$r = \sqrt{\frac{d^2 n_T n_C}{d^2 n_T n_C + n(n-1)}}$$

 $n = n_c + n_c$