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Putting your Regression Model to the
Test

If it's possible to prove it wrong
You're going to want to know before too long
You'll need a test

- from Put it to the Test by They Might Be Giants

You have Fit a Model. Now...

Can you really use this model fit?

Does your model explain variation in the data?
. Are your coefficients different from 0?7

How much variation is retained by the model?
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. How confident can you be in model predictions?

Assumptions of Ordinary Least Squares Regression

> Linearity
> Normality
> Results are not driven by outliers

Assumptions of Ordinary Least Squares Regression

par(nfrow = c(2, 3))
plot(wolf_lm, which = 1:5, cex.axis = 1.4)
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Is Anything Systematically Wrong?

Residuals vs Fitted
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Im(pups ~ inbreeding.coefficient)

» Patterns produced if
relationship isn't linear

» Other drivers may affect high
or low values

Are the Residuals Normal?
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Theoretical Quantiles
Im(pups ~ inbreeding.coefficient)

> Quantile-Quantile (QQ) Plot
» If residuals are normal, should
fall on line

Standardized Residuals to Diagnose Error Distribution

Problems

Scale-Location

[Standardized residuald

Fitted values
Im(pups ~ inbreeding.coefficient)

> Residuals are standardized

» Shape to data indicates
deviation from normality

» Wedge shapes, bow-ties,
trends all indicated problems

Influential Observations

Residuals vs Leverage
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Leverage
Im(pups ~ inbreeding.coefficient)

> Leverage is distance from
mean X

> h=14




Influential Observations Testing the Model

Ho = The model predicts no variation in the data.

Cook's distance Ha = The model predicts variation in the data.
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Components of the Total Sums of Squares F Test to Evaluate Predictor's Contribution

Sr

/52 with DF=1,n-2

SSp =N (Vi — ¥)?, df=1

S8k = L(Yi — V;)?, df=n-2 .

ay

To compare them, we need to correct for different DF. This is the
Mean Square.

MS=SS/DF

eg MSp=

1-Tailed Test
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F-test Example: Wolves

anova(wolf_1m)
## Analysis of Variance Table

## Response: pups

## Df Sum Sq Mean Sq F value Pr(>F)

## inbreeding.coefficient 1 29.9 29.90
## Residuals 22 51.1 2.32

12.9 0.0016

Error in the Slope Estimate

95% Cl = b+ ta(g)ﬂfSEb

Assessing the Slope

SE,

DF=n-2

Coefficient of Determination

R? = The porportion of Y is predicted by X.

R2 — SSreqression
SStotal

| — SSrpreseion
5Serron
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The "Obese N”

High sample size can lead to a low p-value, even if
no association exists

Sample Size and R?

High sample size can lead to a low R? if residual SD
is high relative to slope

Example: Wolf Pups

summary (wolf_lm)

e
% Call
## In(fornula = pups * inbreeding.coefficient, data = wolves)

i
## Residuale

#%  Min 10 Median 30  Max
## -2.133 -0.820 -0.434 0.668 3.608
e

## Coetficients
# Est.

Std. Error ¢ value Pr(>tl)
0.791  8.31 3.1e-08
3.189 -3.59  0.0016

## (Intercept)
## inbreeding. coefficient -1
e

## Rasidual standard error: 1.52 on 22 degrees of frasdom
# Multiple R-squared: 0.369, Adjusted R-squared: 0.341
## P-statistic: 12.9 on 1 and 22 DF, p-value: 0.00163

Exercise: Pufferfish Mimics & Predator Approaches

» Fit the pufferfish data

> Evaluate whether it meets
assumptions

> Evaluate Ho and how well this
model explains the data
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Confidence Intervals Around Fit

pups

inbreeding.coefficient

Accomodates uncertainty in slope & intercept

Confidence Intervals Around Fit

plot(pups ~ inbreeding.coefficient, data=wolves, pch=19)
abline(wolf_lm, col= , lwd=2)
predFrame <- data.frame(inbreeding.coefficient=seq(0,0.4,.01))
predFitConf <- predict(wolf_lm, newdata=predFrame,

interval= )
matlines(predFrame, predFitConf[,2:3], type="1", 1ty=2, col= )

Confidence Intervals Around Prediction

interval = "prediction”

pups

inbreedingcoefficient

Remember: Extrapolation beyond range of data is bad practice

Testing the Effect of Removing Outliers

Residuals vs Leverage
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Testing the Effect of Removing Outliers

wolf_lm_sub <- lm(pups ~ inbreeding.coefficient,
data=wolves, subset=-c(6,7,3))

#another way
wolf_Im_sub <- update(wolf_lm, subset=-c(6,7,3))

Comparing Two Slopes

Ho: B = 2

t = (bi=bo)—(51-52)
SEp1—p2

df=nl-2+n2-2

Comparing Two Slopes

MSE
SEhi—b2 = \S5x; T S55x,

SSE+SSE
MSE, = 95E-S5E

Comparing Two Slopes

wolf_lm_sub <- lm(pups ~ inbreeding.coefficient, data = wolves,
subset = -c(6, 7, 3))

# another way
wolf_lm_sub <- update(wolf_lm, subset = -c(6, 7, 3))
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Comparing Two Slopes

#get anova tables for later extraction of MSE
al <- anova(wolf_lm)
a2 <- anova(wolf_lm_sub)

#ie s
with(wolves, {
ss1 <<- sum((inbreeding.coefficient -
mean (inbreeding. coefficient))"2)

ss2 <<- sum((inbreeding.coefficient[-c(6,7,3)] -
mean (inbreeding.coefficient[-c(6,7,3)1))"2)
b

Comparing Two Slopes
# calculate the DF
df <- nrow(wolves) * 2 - 3 - 4

# calcaulate the mean square pooled error
msp <- (ai[2, 3] + a2[2, 3]1)/(df)

# calculate the SE of the difference
sep <~ sqrt(msp/ssl + msp/ss2)

# calculate t
t <~ (coef (wolf_1lm)[2] - coef (wolf_lm_sub) [2])/sep

# get the p value
pt(t, df) * 2

## inbreeding.coefficient
4 0.01322

Exercise: Pufferfish Mimics & Predator Approaches

v

Check confidence and prediction
intervals of the puffer fit

v

Evaluate the effect of dropping
outliers

v

Challenge: write a function to
compare slopes from two different
Ims




